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Abstract

Ramsey Theory is a branch of discrete mathematics studying unavoidable patterns in
“large enough” systems. We study the minimum number of colors needed in a proper
edge-coloring of a complete graph on n vertices to avoid certain small substructures. We
give new bounds when avoiding two disjoint color-isomorphic triangles and when avoiding
a path on four edges with two colors.

Introduction

We focus on edge-colorings of the complete graph Kn on n vertices. For example, what
is the minimum n such that every red-blue coloring of Kn contains a monochromatic trian-
gle? Any red-blue coloring of K6 will have a monochromatic triangle, but K5 may not.

We are interested in the number of colors required to avoid such substructures.

Definition 1: A color pattern H is an edge-labelled graph. An edge-colored graph
G contains H if there is a copy of H in G where edges of the same label receive the
same color.

The above graph on the left avoids 1 1

1
, but the graph on the right does contain 1 1

1
. A

proper edge-coloring is a coloring avoiding 1 1 .

Definition 2: Let F be a set of color patterns. We define R(n,F) to be the minimum
number of colors needed to edge-color Kn while avoiding every color pattern in F .

The above example shows R(5, 1 1

1
) ≤ 2 and R(6, 1 1

1
) ≥ 3.

This formalism expresses various Ramsey problems. We investigate R(n, { 1 1 , 1 2

3

1 2

3
})

and R(n, { 1 1 , 1
2

1
2 }).

Avoiding Two Disjoint Color-Isomorphic Triangles

Conlon and Tyomkyn [1] introduced the problem of determining the minimum number of
colors needed to properly edge-color Kn with no k disjoint color-isomorphic copies of a
fixed graph H. In our language, the simplest nontrivial case is R(n, { 1 1 , 1 2

3

1 2

3
}).

The first forbidden color pattern restricts us to proper edge-colorings; the second forbids
disjoint triangles with the same colors. Our starting point is the following result.

Theorem 1 (Conlon-Tyomkyn, 2021): Let F = { 1 1 , 1 2

3

1 2

3
}. Then

R(2k + 1,F) = 2k + 1 and R(2k,F) ∈ {2k − 1, 2k, 2k + 1}.

Proof. For 2k+1 vertices, each color class is a matching and so can have at most k edges.
Since there are

(2k+1
2

)
= (2k + 1)k edges in total, there must be at least 2k + 1 colors, so

R(2k + 1, { 1 1 , 1 2

3

1 2

3
}) ≥ 2k + 1. A similar counting argument for 2k vertices yields

R(2k, { 1 1 , 1 2

3

1 2

3
}) ≥ 2k − 1.

We give a geometric coloring of K2k+1 with 2k+1 colors. Space the 2k+1 vertices equally
along a circle. Parallel edges are given the same color, as in the figure.

Color Class 1 Color Class 2 Color Class 3 Color Class 4

Color Class 5 Color Class 6 Color Class 7 Combined

The above coloring is proper and uses 2k+1 colors. It can be shown that because 2k+1 is
odd, this coloring does not have disjoint color-isomorphic triangles. We can also remove
a vertex from the above coloring of K2k+1 to get a coloring of K2k. This gives

R(2k + 1, { 1 1 , 1 2

3

1 2

3
}) ≤ 2k + 1 and R(2k, { 1 1 , 1 2

3

1 2

3
}) ≤ 2k + 1.

The preceding theorem completely solves R(n, { 1 1 , 1 2

3

1 2

3
}) for odd n. We improve

on this for some small even cases.

Theorem 2 (EEJKT): Let F = { 1 1 , 1 2

3

1 2

3
}. Then

R(6,F) = 7 and R(8,F) ∈ {8, 9}.

Proof. We only prove the weaker R(6,F) ≥ 6 here. Suppose, for the sake of contradiction,
that K6 can be properly colored with 5 colors while avoiding disjoint color-isomorphic tri-
angles. In order to have a proper coloring of K6, each color class must have 3 edges and
be a perfect matching. Then the union of 2 color classes must form a collection of even
cycles. Thus every 2 color classes must form a hexagon. The only way to assign another
perfect matching to this hexagon is to use the diameters:

0 diameters - no third
edge

1 diameters -
color-isomorphic triangles

2 diameters - requires a
third diameter

Thus any 3 perfect matchings in K6 form a hexagon plus 3 diameters, leaving no space for
more perfect matchings. Hence K6 cannot be colored with 5 colors.

Avoiding an Alternating Path of Length 4

Here we consider R(n, { 1 1 , 1
2

1
2 }) where we are restricted to proper edge-colorings

that avoid paths on 4 edges with alternating colors. Rosta [3] gave a coloring that satisfies
these conditions that uses n− 1 colors for n = 2k vertices. Keevash and Sudokov [2] later
demonstrated this can only be done when n = 2k.

Theorem 3 (Keevash-Sudakov, 2005):

R(n, { 1 1 , 1
2

1
2 }) = n− 1 if and only if n = 2k.

If n ̸= 2k, the previous theorem gives us 2 basic bounds. Let 2k be the first power of 2

greater than n. Then, R(n, { 1 1 , 1
2

1
2 }) ≥ n and R(n, { 1 1 , 1

2
1

2 }) ≤ 2k − 1. We
can improve this upper bound in various cases.

Theorem 4 (EEJKT):
R(9, { 1 1 , 1

2
1

2 }) ≤ 12.

Colors 1, 2, 3 Colors 4, 5, 6 Colors 7, 8, 9 Colors 10, 11, 12

One can check that the union of any two of these colors avoids an alternating path. With
the following theorem, we can use any prior colorings to build colorings for larger graphs.

For example, the bound R(18, { 1 1 , 1
2

1
2 }) ≤ 31 can be improved to 25.

Theorem 5 (EEJKT): Let F = { 1 1 , 1
2

1
2 }. Then

R(ab,F) + 1 ≤ (R(a,F) + 1)(R(b,F) + 1).

Proof. Let [n] = {1, . . . , n}, and let C1 and C2 be sets of colors of size R(a,F) + 1 and
R(b,F) + 1, resp. Let

χ1 : [a]
2 → C1 and χ2 : [b]

2 → C2

be colorings of the complete graph on a and b vertices, resp., which avoid 1 1 and
1

2
1

2 , where we also color loops. Define

χ : ([a]× [b])2 → C1 × C2

by
χ((i1, j1), (i2, j2)) = (χ1(i1, i2), χ2(j1, j2)).

Then χ is a coloring of the complete graph on ab vertices, where we also color loops, using
(R(a) + 1)(R(b) + 1) colors. See the Figure.

Claim 1: χ avoids 1 1 . Suppose there are two incident edges of the same color:

χ((i1, j1), (i2, j2)) = χ((i1, j1), (i3, j3)).

Looking at each coordinate, we have χ1(i1, i2) = χ1(i1, i3) and χ2(j1, j2) = χ2(j1, j3). Since
χ1 and χ2 avoid 1 1 , these imply i2 = i3 and j2 = j3, which means that the initial edges
were the same.

Claim 2: χ avoids 1
2

1
2 . Suppose there is such an alternating path starting at (i1, j1)

and ending at (i5, j5). Looking at the first coordinate, since χ1 has no such alternating
path, we have i1 = i5. Similarly, j1 = j5. Thus (i1, j1) = (i5, j5) which is a contradiction.

The coloring χ colors Kab with (R(a,F) + 1)(R(b,F) + 1) colors and is monochromatic
cherry and alternating color path free. Since we color the loops with all the same color,
we have R(ab,F) ≤ (R(a,F) + 1)(R(b,F) + 1)− 1.

Open Questions

1. Improve the bounds on R(n, { 1 1 , 1
2

1
2 }) for n ̸= 2k.

2. Determine R(n, { 1 1 , Ak}) where Ak is an alternating path of length k > 4.

3. Determine R(2k, { 1 1 , 1 2

3

1 2

3
}) for more values of k.
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