Investigations in Combinatorial Game Theory

Anuprova Bhowmik, Andrew Brown, Grace Juhn, Elijah Song, Bob Krueger (Team Leader)

University of Illinois at Urbana-Champaign

Illinois Geometry Lab Final Presentation June 25, 2020

Impartial Combinatorial Games

Definition (Impartial Combinatorial Game)

A game has

- two players
- take turns making moves
- moves come from a shared set
- Iast one to move wins

Subtraction Games

Definition (Subtraction Game)

Let *S* be a set of positive integers. A **subtraction game** *S* is a game in which players

- remove tokens from a shared pile
- number of tokens removed is in S
- Iast one to move wins

Subtraction Games

Definition (Subtraction Game)

Let *S* be a set of positive integers. A **subtraction game** *S* is a game in which players

- remove tokens from a shared pile
- number of tokens removed is in S
- Iast one to move wins
- Ex. $S = \{2, 3\}$
 - If the pile has 1 or 0 tokens, the next player loses.
 - If the pile has 3 tokens, then the next player wins.

P & N Positions

Definition (P Position)

A **P position** is a position where the *previous* player has a winning strategy

For $S = \{2,3\}$, a pile with 1 token is a P position. For $S = \{2,3\}$, a pile with 5 tokens is a P position.

Definition (N Position)

A **N position** is a position where the *next* player has a winning strategy

For $S = \{2, 3\}$, a pile with 3 tokens is an N position.

P & N Positions

Definition (P Position)

A **P position** is a position where the *previous* player has a winning strategy

Definition (N Position)

A **N position** is a position where the *next* player has a winning strategy

- A position G is a N position *iff* at least one position reachable from G is a P position.
- A position G is a P position *iff* all positions reachable from G are N positions.

Winning strategy: move to a P position.

Determining P and N Positions

Subtraction Game with Set $\{2, 3\}$

Tokens	P/N		
0	Р		
1	Р		
2	Ν		
3	Ν		
4	Ν		
5	Р		
6	Р		
7	Ν		
8	Ν		
9	Ν		
10	Р		

Many classic games can be written in the form $(S, T)_k$

- S: Set of pieces you are allowed to remove from a pile
- T: Set of number of piles you are allowed to play on
- k: Total number of piles in the game

$(S, T)_k$ Notation Example: Subtraction Games

Notation: $(S, \{1\})_1$

- S represents the set of pieces you are allowed to remove.
- $T = \{1\}$: Only allowed to remove from one pile.
- k = 1: Only pile in the game.

$(S, T)_k$ Notation Example: Nim

Notation: $(\mathbb{Z}^+, \{1\})_k$

- $S = \mathbb{Z}^+ = \{1, 2, 3, ...\}$, so you are allowed to remove whatever you want from a pile.
- $T = \{1\}$: Only allowed to remove from one pile.
- k can be anything.

P-positions: The addition of the piles in binary without carrying is equal to 0.

$(S, T)_k$ Notation Example: Moore's Nim

Notation: $(\mathbb{Z}^+, \{1, 2, 3, ..., \ell\})_k$

- $S = \mathbb{Z}^+$: allowed to remove whatever you want.
- $T = \{1, 2, 3, ..., \ell\}$: allowed to remove from up to ℓ piles.*
- k can be anything.

*Note: You can remove different numbers of pieces from different piles.

P-positions: The addition of the piles in binary without carrying in base $\ell + 1$ is equal to 0.

$(S, T)_k$ Notation Example: Princess and Roses

Notation: $(\{1\}, \{1, 2\})_k$

- $S = \{1\}$: must remove one piece from a pile.
- $T = \{1, 2\}$: must remove from one or two piles.
- k can be anything.

P-Positions: We have P-positions for number of piles $k \le 4$.

• 4-pile: Piles are P-positions iff all piles are even or three piles are odd and the smallest is even.

 $(\mathbb{Z}^+, \{k\})_{2k}$

Rules for the game	Proposal for P-position	Proving the result
Ex. (ℤ ⁺ , {2}) ₄ ● "4"= # of piles	Three ' <i>a</i> ' values and one value of $a + c$.	ex. 3, 4, 5, 7 \rightarrow 3, 3, 3, 7
 "ℤ⁺" = subtract any positive integer. "2" = two piles must be 	 <i>a</i> is any non-negative integer <i>c</i> ≥ 0 	ex. 3, 3, 5, 5 \rightarrow 3, 3, 3, 3 ex. 4, 4, 4, 2 \rightarrow 2, 2, 4, 2
subtracted from each turn.	a, a, a, (a + c)	ex. 4, 4, 4, 7 \rightarrow 4, 4, 2, 5

$(S, \{1, \ldots, k\})_k$

P positions of $(\{2,3\},\{1,2,3\})_3$:

• all pile sizes 0,1 (mod 5)

P and N-positions for subtraction game with $S = \{2, 3\}$:

pile size mod 5	0	1	2	3	4
P or N	Ρ	Ρ	Ν	Ν	N

P-position criteria:

Each pile is a P-position in it's own subtraction game

Why This Works: $(S, \{1, \ldots, k\})_k$

- When in a P-position, any pile cannot be moved to another P-position in its own subtraction game.
- From an N-position the player can change each of the piles into a P-position of its own subtraction game.
- Eventually, all of the piles will be P-positions, and will be too small to remove from.

$(S, \{1, \ldots, k\})_{k+1}$ for any subtraction set S

P positions of $(\{2,3\},\{1,2\})_3$:

all pile sizes 0,1 (mod 5)

all pile sizes 2,3 (mod 5)

• all pile sizes 4 (mod 5)

Nimbers for subtraction game with $S = \{2, 3\}$:

pile size mod 5	0	1	2	3	4
Nimber	0	0	1	1	2

P-position criteria:

All the piles have the same Nimber in their own subtraction game.

Future Work

We also figured out $(\{1\}, T)_3$.

- Extend to ({1}, T)₄
- P-positions of $(\{1\}, \{1, 2\})_6$
- Relate $(\mathbb{Z}^+, \{1,2\})_4$ to $(\{1, \dots, k\}, \{1,2\})_4$

We thank David Frankel (Uni High Class of 1976), whose gift made this experience possible for University Laboratory High School students, and Philipp Hieronymi and Ioana Boca for organizing this experience.

Thanks for listening