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Impartial Combinatorial Games

Definition (Impartial Combinatorial Game)
A game has

two players
take turns making moves
moves come from a shared set
last one to move wins
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Subtraction Games

Definition (Subtraction Game)
Let S be a set of positive integers.
A subtraction game S is a game in which players

remove tokens from a shared pile
number of tokens removed is in S
last one to move wins

Ex. S = {2,3}
If the pile has 1 or 0 tokens, the next player loses.
If the pile has 3 tokens, then the next player wins.
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P & N Positions

Definition (P Position)
A P position is a position where the previous player has a winning
strategy

For S = {2,3}, a pile with 1 token is a P position.
For S = {2,3}, a pile with 5 tokens is a P position.

Definition (N Position)
A N position is a position where the next player has a winning strategy

For S = {2,3}, a pile with 3 tokens is an N position.

Anuprova, Andy, Grace, Elijah (UIUC) Combinatorial Game Theory 4 / 15



P & N Positions

Definition (P Position)
A P position is a position where the previous player has a winning
strategy

Definition (N Position)
A N position is a position where the next player has a winning strategy

A position G is a N position iff at least one position reachable from
G is a P position.

A position G is a P position iff all positions reachable from G are N
positions.

Winning strategy: move to a P position.
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Determining P and N Positions

Subtraction Game with Set {2, 3}

Tokens P/N

0 P
1 P
2 N
3 N
4 N
5 P
6 P
7 N
8 N
9 N
10 P
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(S,T )k Notation

Many classic games can be written in the form (S,T )k

S: Set of pieces you are allowed to remove from a pile
T: Set of number of piles you are allowed to play on
k: Total number of piles in the game
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(S,T )k Notation Example: Subtraction Games

Notation: (S, {1})1

S represents the set of pieces you are allowed to remove.
T = {1}: Only allowed to remove from one pile.
k = 1: Only pile in the game.
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(S,T )k Notation Example: Nim

Notation: (Z+, {1})k

S = Z+ = {1,2,3, . . . }, so you are allowed to remove whatever
you want from a pile.
T = {1}: Only allowed to remove from one pile.
k can be anything.

P-positions: The addition of the piles in binary without carrying is equal
to 0.
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(S,T )k Notation Example: Moore’s Nim

Notation: (Z+, {1,2,3, ..., `})k

S = Z+: allowed to remove whatever you want.
T = {1,2,3, ..., `}: allowed to remove from up to ` piles.*
k can be anything.

*Note: You can remove different numbers of pieces from different piles.

P-positions: The addition of the piles in binary without carrying in base
`+ 1 is equal to 0.
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(S,T )k Notation Example: Princess and Roses

Notation: ({1}, {1,2})k

S = {1}: must remove one piece from a pile.
T = {1,2}: must remove from one or two piles.
k can be anything.

P-Positions: We have P-positions for number of piles k ≤ 4.
4-pile: Piles are P-positions iff all piles are even or three piles are
odd and the smallest is even.
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(Z+, {k})2k

Rules for the game
Proposal for
P-position Proving the result

Ex. (Z+, {2})4

“4”= # of piles
“Z+” = subtract
any positive
integer.
“2” = two piles
must be
subtracted from
each turn.

Three ‘a’ values and
one value of a + c.

a is any
non-negative
integer

c ≥ 0

a,a,a, (a + c)

ex. 3,4,5,7
→ 3,3,3,7

ex. 3,3,5,5
→ 3,3,3,3

ex. 4,4,4,2
→ 2,2,4,2

ex. 4,4,4,7
→ 4,4,2,5
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(S, {1, . . . , k})k

P positions of ({2,3}, {1,2,3})3:
all pile sizes 0,1 (mod 5)

P and N-positions for subtraction game with S = {2,3}:

pile size mod 5 0 1 2 3 4
P or N P P N N N

P-position criteria:
Each pile is a P-position in it’s own subtraction game
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Why This Works: (S, {1, . . . , k})k

1 When in a P-position, any pile cannot be moved to another
P-position in its own subtraction game.

2 From an N-position the player can change each of the piles into a
P-position of its own subtraction game.

3 Eventually, all of the piles will be P-positions, and will be too small
to remove from.
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(S, {1, . . . , k})k+1 for any subtraction set S

P positions of ({2,3}, {1,2})3:
all pile sizes 0,1 (mod 5)
all pile sizes 2,3 (mod 5)
all pile sizes 4 (mod 5)

Nimbers for subtraction game with S = {2,3}:

pile size mod 5 0 1 2 3 4
Nimber 0 0 1 1 2

P-position criteria:
All the piles have the same Nimber in their own subtraction game.
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Future Work

We also figured out ({1},T )3.
Extend to ({1},T )4

P-positions of ({1}, {1,2})6

Relate (Z+, {1,2})4 to ({1, . . . , k}, {1,2})4

We thank David Frankel (Uni High Class of 1976), whose gift made this
experience possible for University Laboratory High School students,
and Philipp Hieronymi and Ioana Boca for organizing this experience.

Thanks for listening
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