New Results Towards the Erdős-Fishburn Problem

Presenters: Nelitha Kulasiri (Carnegie Mellon University), Adri Wessels (Stellenbosch University and NITheCS), Edward Yu (Massachusetts Institute of Technology)

Mentors: Adam Sheffer, Eyvindur Palsson, Sara Fish, Robert A. Krueger, Nart Shalqini

Other Project Members: Kellen Atkins, Rinkiny Ghatak, Virginia Heinsen, Jack Leonida, Amogh Kumar Mishra, Nikola Muromcew, Dhawal Singh, Minh-Quan Vo.

Polymath Jr. 2023 Distinct Distances Group

January 6, 2023

COUNTING DISTINCT DISTANCES

A point set with 5 distinct distances: $\sqrt{5}$, 3, $2\sqrt{5}$, 5, $\sqrt{34}$.

ERDŐS DISTINCT DISTANCES PROBLEM

Conjecture (Erdős, 1946)

The minimum number of distinct distances spanned by *n* points is about $\frac{n}{\sqrt{\log n}}$.

Conjecture (Erdős, 1946)

The minimum number of distinct distances spanned by *n* points is about $\frac{n}{\sqrt{\log n}}$.

This conjecture was essentially resolved by Guth and Katz using incidence bounds:

THEOREM (GUTH, KATZ 2010)

The minimum number of distinct distances spanned by n points is at least $\frac{n}{\log n}$.

Conjecture (Erdős, 1946)

The minimum number of distinct distances spanned by *n* points is about $\frac{n}{\sqrt{\log n}}$.

However, Erdős also conjectured that the extremal construction "possesses lattice structure," and results in this vein have been much harder to prove.

QUESTION

What is the maximum number of points in \mathbb{R}^2 that span one distance?

QUESTION

What is the maximum number of points in \mathbb{R}^2 that span one distance?

Answer: **3 points**.

TWO DISTINCT DISTANCES

QUESTION

What is the maximum number of points in \mathbb{R}^2 that span exactly two distinct distances?

TWO DISTINCT DISTANCES

QUESTION

What is the maximum number of points in \mathbb{R}^2 that span exactly two distinct distances?

Answeer: 5 points.

THE ERDŐS-FISHBURN PROBLEM

Erdős, Fishburn

For $k \in \mathbb{N}$, let g(k) be the maximum number of points in \mathbb{R}^2 that span exactly k distances.

A regular 2k + 1 gon has k distinct distances, so $g(k) \ge 2k + 1$ for all k.

THREE DISTINCT DISTANCES

QUESTION

What is the maximum number of points in \mathbb{R}^2 that span exactly three distinct distances? (i.e. what is g(3)?)

g(3) = 7, and the unique extremal configurations are above.

FOUR DISTINCT DISTANCES

QUESTION

What is the maximum number of points in \mathbb{R}^2 that span exactly four distinct distances?

g(4) = 9, and the unique extremal configurations are above.

QUESTION

What is the maximum number of points in \mathbb{R}^2 that span exactly five distinct distances?

Answer: 12 points.

g(5) = 12, and the unique extremal configurations are above.

SIX DISTINCT DISTANCES

- Shinohara (2008) showed g(6) = 13.
- Open problem: what are the 13-point 6-distance sets?

The three such known point sets

KNOWN GENERAL RESULTS

A regular 2k + 1 gon has k distinct distances, so $g(k) \ge 2k + 1$.

KNOWN GENERAL RESULTS

Triangular lattice bound (Balaji, Edwards, Loftin' 2020) :

$$g(k) \geq 3\lfloor \sqrt{k+1} \rfloor^2 - 3\lfloor \sqrt{k+1} \rfloor + 1$$

From this, it can be easily shown that g(k) > 2k + 1 for all k > 6.

A general construction for the above bound

OVERVIEW OF KNOWN RESULTS

k	g(k)	Completely Characterized?
1	3	Yes
2	5	Yes
3	7	Yes
4	9	Yes
5	12	Yes
6	13	No
7	≥ 16	No
8	\geq 19	No

- Main Goal: Classifying all 13 point 6 distance sets.
- Important Case: Classifying 11-point 6-distance convex sets.
- New Idea: Computational technique to generate posets of distinct distances.
- **Similar Problem:** Progress in an adjacent problem about counting distinct triangles.

Lemma (Altman 1972)

Let P be a set of n points in convex position. Then P spans at least $\lfloor n/2 \rfloor$ distinct distances.

CASEWORK ON THE 13 POINT 6 DISTANCE SET

Goal: classify g(6), the 13 point 6 distance sets.

CASEWORK ON THE 13 POINT 6 DISTANCE SET

Goal: classify g(6), the 13 point 6 distance sets.

- 13 vertices on convex hull boundary:
- Altman Lemma: convex hull is regular 13-gon.

Only valid configuration for 13 points in convex hull

CASEWORK ON THE 13 POINT 6 DISTANCE SET

Goal: classify g(6), the 13 point 6 distance sets.

- 12 vertices on convex hull boundary:
- Altman Lemma: convex hull is regular 12-gon, or 12 points of 13-gon.
- Only one way to add remaining point.

Only valid configuration for 12 points in convex hull

DEFINITION

Given two points p, q of point set $P \in \mathbb{R}^2$, the segment pq is a **diameter** of P if no other segment is longer than pq.

Two point sets with diameter segments highlighted.

Definition

The **diameter graph** of $P \subset \mathbb{R}^2$ is the graph with vertex set on P whose edges are the diameters of P.

A point set and its diameter graph.

LEMMA

Any two diameters of a point set either intersect or share an endpoint.

LEMMA

The set of endpoints of diameters is convex.

11 vertices on the convex hull boundary...significantly trickier!

THEOREM (MAIN RESULT)

If 11 points are in a convex position and span 6 distances, they must be either:

- Any 11 points from the vertices of a regular 12-gon
- Any 11 points from the vertices of a regular 13-gon

Convex 11 point 6 distance sets

4 of the 7 possible convex 11 point 6 distance sets

How was this classification attained?

How was this classification attained?

• Split into 3 big cases based on properties of the diameter graphs.

How was this classification attained?

- Split into 3 big cases based on properties of the diameter graphs.
- Then, successively apply simple geometric techniques to deduce the remaining distances until a valid configuration, or a contradiction.

A diameter graph and the deduced distances in solving the case

PERPENDICULAR BISECTOR LEMMA

LEMMA (PERPENDICULAR BISECTOR LEMMA)

Let $x, y, z \in \mathbb{R}^2$, then:

 $d(x,z) < d(y,z) \iff z$ lies on the x-side of the perpendicular bisector of xy

LONG CHAINS OF DISTANCES

The perpendicular bisector lemma can yield chains of inequalities.

LEMMA (CHAIN LEMMA)

If we have line segments x_1x_2 , x_3x_4 ,..., $x_{11}x_{12}$ in decreasing order and the possible distances are $d_1 > d_2 > \cdots > d_6$, then:

COMPUTATIONAL CASE SOLVING TOOL

The diameter graph from before and the distances deduced by us (left) and by the program (right).

Computational Case Solving Tool: Input

The diameter graph and how to encode it in the program

Computational Case Solving Tool: Result

The deduced edges in table and graphical form

OVERVIEW OF THE ALGORITHM

1: repeat

- 2: **for all** segments $v_i v_j$ **do**
- 3: UPDATELOWERBOUND $(v_i v_j)$
- 4: UPDATEUPPERBOUND $(v_i v_j)$
- 5: end for
- 6: APPLYBISECTORLEMMA
- 7: IMPROVELOWERBOUNDS
- 8: FINDCHAINS
- 9: until no more new deductions are made

Our C++ code can also be found on GitHub: https://github.com/Puddlestomper/DistinctDistances

Representing Edge Length Information

We represent the line segments and lengths in our sketch as the nodes in a directed graph, where an arrow from ab to cd indicates that d(a, b) < d(c, d).

On the left we show initial conditions and on the right the corresponding representation in the program.

Theorem

If 11 points are in a convex position and span 6 distances, they must be either:

- Any 11 points from the vertices of a regular 12-gon
- Any 11 points from the vertices of a regular 13-gon

The following remains to be explored:

- Complete the classification of extremal point sets for g(6);
- Compute the value of g(7), the next open value;
- Improve computational tools to assist in the above;
- and more

- The Polymath Jr. organizers & our project mentors.
- National Institute for Theoretical and Computational Sciences (South Africa) for partially funding Adri's attendance.