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Introduction

Abstract
In 1994, Thomassen [3] proved that for every planar graph G with color lists of size five,
there exists a coloring of G such that no two adjacent vertices share a color. Our goal is
to show that with some additional property on G, we can always satisfy an ε-proportion
of color requests, for some universal constant ε > 0.

Definitions
• A planar graph is a graph that can be drawn in the plane without any edge crossings.
• A list assignment for a graph G is a function that assigns each vertex v ∈ V (G) a set
L(v) of colors, and an L-coloring is a proper coloring ϕ such that ϕ(v) ∈ L(v) for all
v ∈ V (G).

• A request for a graph G with a list assignment L is a function r with a domain
dom(r) ⊆ V (G) such that r(v) ∈ L(v) for all v ∈ dom(r).

• For ε > 0, we say that a request r is ε-satisfiable if there exists an L-coloring ϕ of G
such that ϕ(v) = r(v) for at least ε|dom(r)| vertices v ∈ dom(r).

• A graph G with a list assignment L is called ε-flexible if every request is ε-satisfiable.
• For a given ε > 0, n ∈ N, a graph G is ε-flexibly k-choosable if it is ε-flexible for every list
assignment of lists of size k.

• The degree of a vertex v, denoted d(v), is the number of edges incident to v.
• The maximum average degree of a graph G, denoted mad(G), is the maximum of the
average degree taken over all induced subgraphs of G.

Motivation
• Planar graphs with n vertices are 1

n-flexibly 5-choosable [3].

• There exists ε > 0, such that mad(G) < 4 + 2
5 implies G is ε-flexibly 5-choosable [2].

• If G is planar then mad(G) < 6.

The graph on the left is an example of a list
coloring with requests. Each vertex has a list
of colors, with some lists having a color pref-
erence (represented with a black box).

Background

Definition: Reducible subgraph
Let G be a graph, let H ⊆ G be an induced subgraph. For each v ∈ V (H), define
ℓ(v) = 5− |N(v) ∩ (G−H)|. Then H is reducible if for every ℓ-assignment L on H, the
following holds:

• FIX: ∀v ∈ V (H), ∀c ∈ L(v), there exist an L-coloring φ such that φ(v) = c.
• FORB: ∀U ⊆ V (H) of size at most 3, ∀c ∈ L(v), there exist an L-coloring φ of H such
that φ(u) ̸= c for every u ∈ U .

Lemma (Dvořák, Masařı́k, Musı́lek, Pangrác [1]): If any induced subgraph of G has a
reducible subgraph, then there exists ε > 0 such that G is ε-flexibly 5-choosable.
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Pictured above is a reducible subgraph. On the left, the vertices are labelled with their
degrees in G. In the middle, the vertices are labelled with their list sizes. On the right, the
vertices are labelled with their list sizes after forbidding a color at the bottom three vertices
(colored in dark gray).

Methods

Theorem ([2]): ∃ε > 0 such that if mad(G) < 4.4 then G is ε-flexibly 5-choosable.

Discharging
• Assign initial charge to vertices and/or faces.
• Specify discharging rules, dictating how vertices/faces exchange charges. Total charge
is conserved.

• Observe the final charges.
Example: Each vertex starts with charge equal to its degree. For the discharging rule,
each vertex of degree greater than 2 gives charge +1 to each of its adjacent vertices.
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Goal: Assuming no reducible subgraphs, the sum of initial charges is negative, but the
sum of final charges is positive, a contradiction.

Linear Programming
• We first establish that the following three graphs are reducible (dashed edge drawn
indicates that there may be an edge present, label is degree of vertex in the graph):
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• Goal: Maximize m such that the following holds: if mad(G) < m, then one of the above
structures appears in G.

• Initial charge at vertex v is d(v)−m. Note: sum of all initial charges is less than 0.
• Discharging rule: each vertex of degree at least 5 gives x charge to its neighbours of
degree 4. Note: sum of all charges is conserved.
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• For a contradiction, assuming that G has no reducible subgraph, we want the sum of
final charges to be at least 0.

• Final charge of degree 4 vertex: 4−m + 2x ≥ 0,
• Final charge of degree 5 vertex: 5−m− 3x ≥ 0,
• Final charge of degree 6 vertex: 6−m− 6x ≥ 0, etc.
• Set up the LP: maximize m such that there exists an x where the above constraints
hold. The optimal solution to this LP is (m,x) = (4.4, 0.2)

Results

Theorem 1 (ABCGKS): There exists a universal ε > 0 such that if mad(G) < 4 + 16
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then G is ε-flexibly 5-choosable.

Theorem 2 (ABCGKS): There exists a universal ε > 0 such that if G is -free, and
mad(G) < 4 + 4

9 then G is ε-flexibly 5-choosable.

Theorem 3 (ABCGKS): There exists a universal ε > 0 such that if G is planar and
-free then G is ε-flexibly 5-choosable.

Future Problems

Question 1
What is the maximum value m for which there exists ε > 0 such that mad(G) < m implies
that G is ε-flexibly 5-choosable?

Question 2
What is the maximum value m for which there exists ε > 0 such that mad(G) < m implies
that a K4-free graph G is ε-flexibly 5-choosable?

Question 3
Could we create a database to store a large set of reducible graphs so that people can
easily check whether a subgraph is reducible or not?

Conjecture [2]
There exists an ε > 0 such that all the planar graphs are ε-flexibly 5-choosable.
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