

Introduction

Abstract

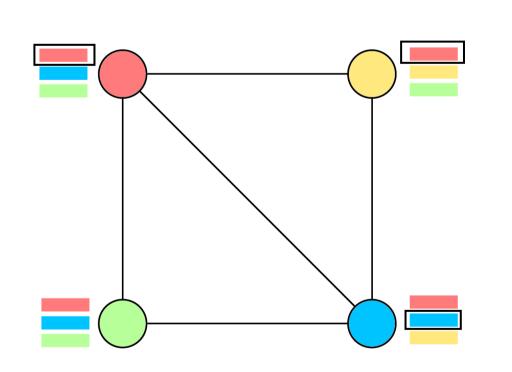
In 1994, Thomassen [3] proved that for every planar graph G with color lists of size five, there exists a coloring of G such that no two adjacent vertices share a color. Our goal is to show that with some additional property on G, we can always satisfy an ε -proportion of color requests, for some universal constant $\varepsilon > 0$.

Definitions

- A *planar graph* is a graph that can be drawn in the plane without any edge crossings.
- A *list assignment* for a graph G is a function that assigns each vertex $v \in V(G)$ a set L(v) of colors, and an *L*-coloring is a proper coloring ϕ such that $\phi(v) \in L(v)$ for all $v \in V(G).$
- A request for a graph G with a list assignment L is a function r with a domain $dom(r) \subseteq V(G)$ such that $r(v) \in L(v)$ for all $v \in dom(r)$.
- For $\varepsilon > 0$, we say that a request r is ε -satisfiable if there exists an L-coloring ϕ of G such that $\phi(v) = r(v)$ for at least $\varepsilon |dom(r)|$ vertices $v \in dom(r)$.
- A graph G with a list assignment L is called ε -flexible if every request is ε -satisfiable.
- For a given $\varepsilon > 0$, $n \in \mathbb{N}$, a graph G is ε -flexibly k-choosable if it is ε -flexible for every list assignment of lists of size k.
- The *degree* of a vertex v, denoted d(v), is the number of edges incident to v.
- The maximum average degree of a graph G, denoted mad(G), is the maximum of the average degree taken over all induced subgraphs of G.

Motivation

- Planar graphs with n vertices are $\frac{1}{n}$ -flexibly 5-choosable [3].
- There exists $\varepsilon > 0$, such that mad $(G) < 4 + \frac{2}{5}$ implies G is ε -flexibly 5-choosable [2].
- If G is planar then mad(G) < 6.



The graph on the left is an example of a list coloring with requests. Each vertex has a list of colors, with some lists having a color preference (represented with a black box).

Background

Definition: Reducible subgraph

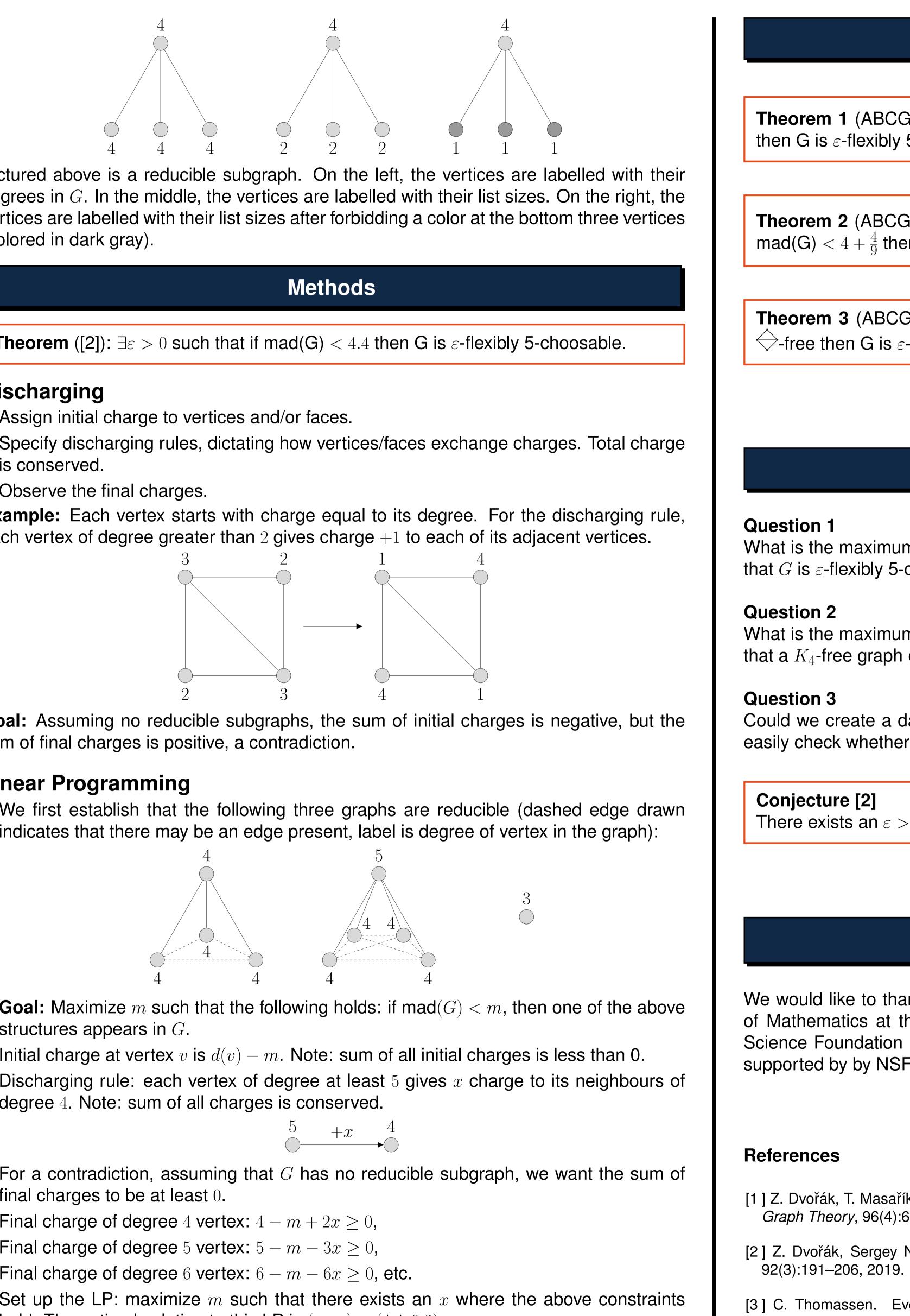
Let G be a graph, let $H \subseteq G$ be an induced subgraph. For each $v \in V(H)$, define $\ell(v) = 5 - |N(v) \cap (G - H)|$. Then H is reducible if for every ℓ -assignment L on H, the following holds:

- FIX: $\forall v \in V(H), \forall c \in L(v), \text{ there exist an } L\text{-coloring } \varphi \text{ such that } \varphi(v) = c.$
- FORB: $\forall U \subseteq V(H)$ of size at most 3, $\forall c \in L(v)$, there exist an L-coloring φ of H such that $\varphi(u) \neq c$ for every $u \in U$.

Lemma (Dvořák, Masařík, Musílek, Pangrác [1]): If any induced subgraph of G has a reducible subgraph, then there exists $\varepsilon > 0$ such that G is ε -flexibly 5-choosable.

List coloring with requests for planar graphs

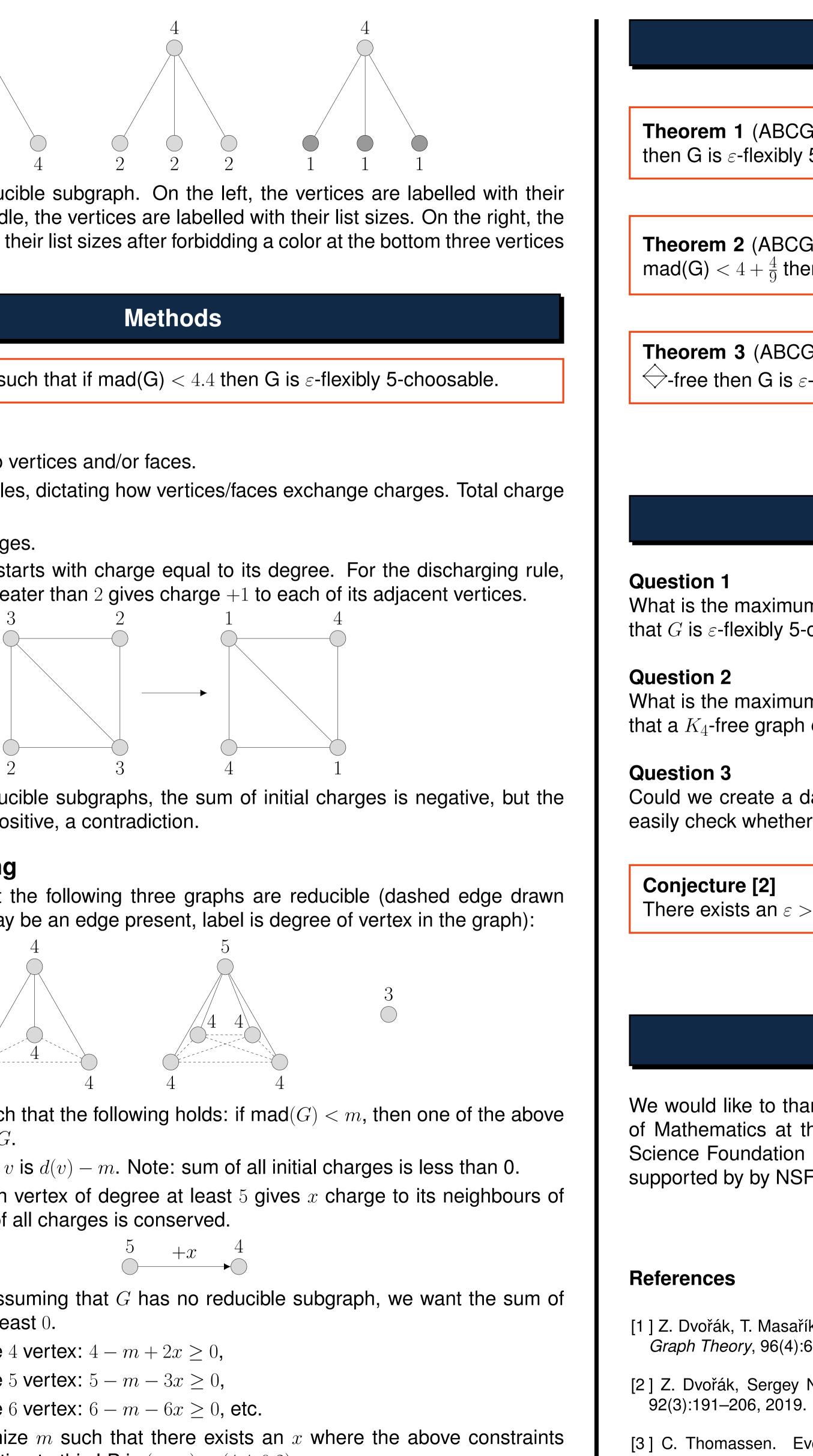
Fawzan Ali, Saurav Chittal, Siyu Gan, Yue Su **Bob Krueger, Peter Bradshaw**



(colored in dark gray).

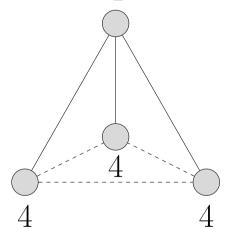
Discharging

- Assign initial charge to vertices and/or faces.
- is conserved.

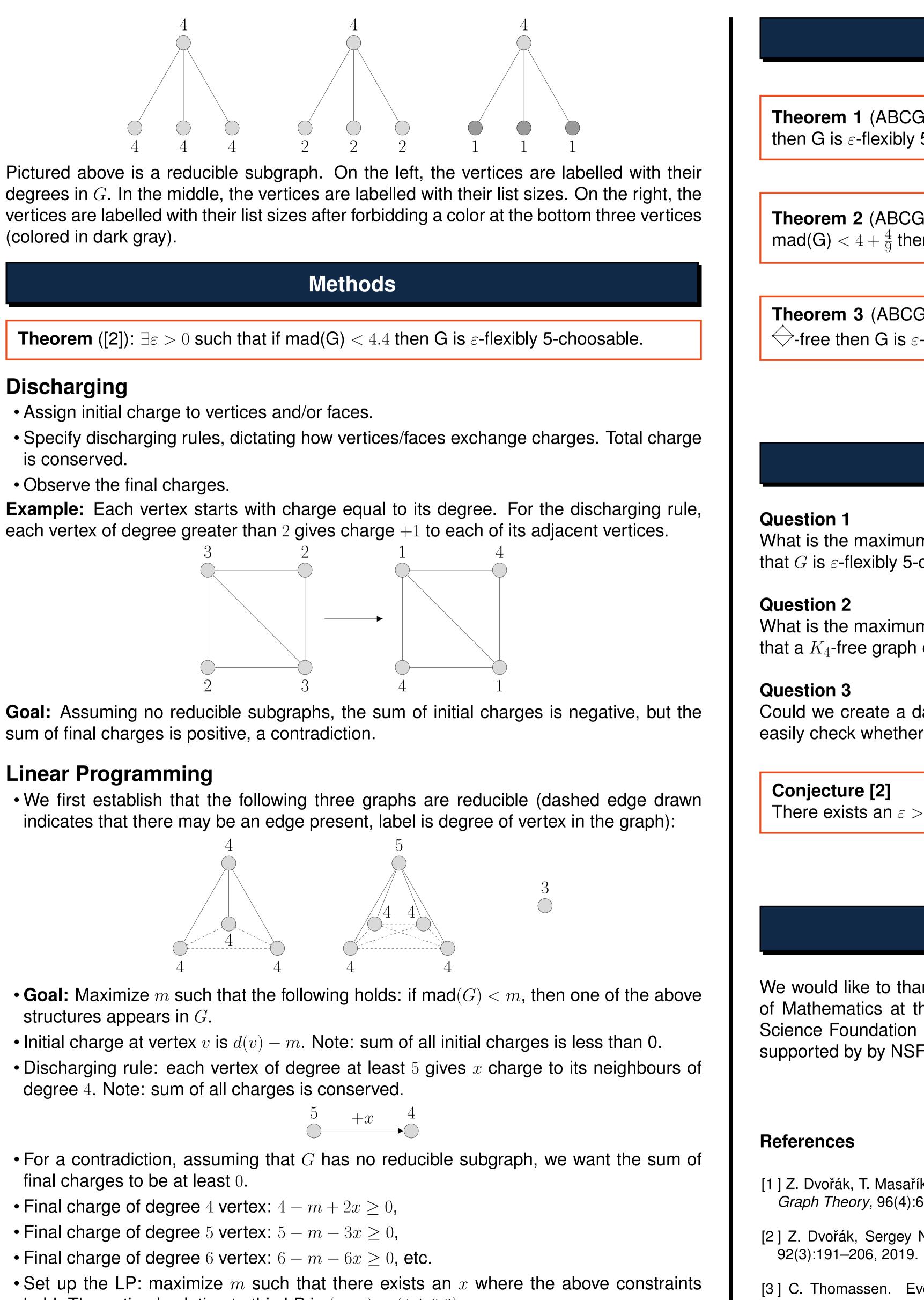


sum of final charges is positive, a contradiction.

Linear Programming



- structures appears in G.
- degree 4. Note: sum of all charges is conserved.



- Final charge of degree 4 vertex: $4 m + 2x \ge 0$,
- Final charge of degree 5 vertex: $5 m 3x \ge 0$,
- Final charge of degree 6 vertex: 6 m 6x > 0, etc.
- hold. The optimal solution to this LP is (m, x) = (4.4, 0.2)

then G is ε -flexibly 5-choosable.

mad(G) < $4 + \frac{4}{9}$ then G is ε -flexibly 5-choosable.

 \Leftrightarrow -free then G is ε -flexibly 5-choosable.

Future Problems

that G is ε -flexibly 5-choosable?

that a K_4 -free graph G is ε -flexibly 5-choosable?

easily check whether a subgraph is reducible or not?

There exists an $\varepsilon > 0$ such that all the planar graphs are ε -flexibly 5-choosable.

Acknowledgements

supported by by NSF RTG grant DMS-1937241.

- [1] Z. Dvořák, T. Masařík, J. Musílek, and O. Pangrác. Flexibility of triangle-free planar graphs. *Journal of* Graph Theory, 96(4):619–641, 2021. [2] Z. Dvořák, Sergey Norin, and Luke Postle. List coloring with requests. Journal of Graph Theory, [3] C. Thomassen. Every planar graph is 5-choosable. Journal of Combinatorial Theory, Series B,
- 62(1):180–181, 1994.

Results

- **Theorem 1** (ABCGKS): There exists a universal $\varepsilon > 0$ such that if mad(G) $< 4 + \frac{16}{37}$
- **Theorem 2** (ABCGKS): There exists a universal $\varepsilon > 0$ such that if G is \bigoplus -free, and
- **Theorem 3** (ABCGKS): There exists a universal $\varepsilon > 0$ such that if G is planar and

- What is the maximum value m for which there exists $\varepsilon > 0$ such that mad(G) < m implies
- What is the maximum value m for which there exists $\varepsilon > 0$ such that mad(G) < m implies
- Could we create a database to store a large set of reducible graphs so that people can
- We would like to thank the IGL Program. IGL research is supported by the Department of Mathematics at the University of Illinois at Urbana-Champaign and by the National Science Foundation under Grant Number DMS-1449269. Peter Bradshaw was partially