
Final Report

Fawzan Ali, Saurav Chittal, Siyu Gan, Yue Su
Faculty Advisor: Peter Bradshaw

Graduate Student Mentor: Bob Krueger

December 20, 2023

1 Abstract

In 1994, Thomassen [3] proved that for every planar graph G with color lists of size five, there exists a
coloring of G such that no two adjacent vertices share a color. Our goal is to show that with some additional
property on G, we can always satisfy an ε-proportion of color requests, for some universal constant ε > 0.

2 Definitions

• A planar graph is a graph that can be drawn in the plane without any edge crossings.

• A list assignment for a graph G is a function that assigns each vertex v ∈ V (G) a set L(v) of colors,
and an L-coloring is a proper coloring ϕ such that ϕ(v) ∈ L(v) for all v ∈ V (G).

• A request for a graph G with a list assignment L is a function r with a domain dom(r) ⊆ V (G) such
that r(v) ∈ L(v) for all v ∈ dom(r).

• For ε > 0, we say that a request r is ε-satisfiable if there exists an L-coloring ϕ of G such that
ϕ(v) = r(v) for at least ε|dom(r)| vertices v ∈ dom(r).

• A graph G with a list assignment L is called ε-flexible if every request is ε-satisfiable.

• For a given ε > 0, n ∈ N, a graph G is ε-flexibly k-choosable if it is ε-flexible for every list assignment
of lists of size k.

• The degree of a vertex v, denoted d(v), is the number of edges incident to v.

• The maximum average degree of a graph G, denoted mad(G), is the maximum of the average degree
taken over all induced subgraphs of G

• A 4-triangle a induced subgraph of G consist of a triangle made of 3 vertices of degree 4

• A 4-component is a component of G that only consists of vertices of degree 4

• Let G be a graph, let H ⊆ G be an induced subgraph. For each v ∈ V (H), define ℓ(v) = 5− |N(v) ∩
(G−H)|. Then H is reducible if for every ℓ-assignment L on H, the following holds:

– FIX: ∀v ∈ V (H), ∀c ∈ L(v), there exist an L-coloring φ such that φ(v) = c.

– FORB: ∀U ⊆ V (H) of size at most 3, ∀c ∈ L(v), there exist an L-coloring φ of H such that
φ(u) ̸= c for every u ∈ U .
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3 Lemma

Lemma 1: A graph like this is list colorable: The list size of the vertices is also exact the same as its degrees.

v1 : 3 v2 : 2

v4 : 3v3 : 2

Proof:

First we examine v1, suppose its lists are: {1, 2, 3}. Consider the lists of v4, if it not the same as v1, suppose
3 is not in its lists, we color vextex v1 with color 1, and drop vertex v1, the new graph becomes:

1 3 1

We can first color the two vertices with list size 1 and then color the vertex with list size 3, it is list colorable.

If the list of v4 is the same as v1

v1 : {1, 2, 3} v2 : 2

v4 : {1, 2, 3}v3 : 2

Consider the lists of v2. If it has some color other than 1,2 and 3, suppose it is 4, and the rest color can be
either 1,2, 3 or something else, but at least one of 1,2 and 3 are not included, suppose it is 1. Color v1 with
the color 1 and we drop v1, the graph with list becomes:

1 2 2

We can color this graph from left to right, it is also list colorable.

If the lists of v2 and v3 are subsets of {1, 2, 3}, so v2 and v3 has at least one common color, suppose it is 1,
and we can color: v1 = 2, v2 = v3 = 1, v3 = 3, it is also list colorable. ■

Lemma 2: A graph like this is also list colorable:
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v1 : 2 v2 : 2

v3 : 3

We can color v1 first, and then color v2, then v3, it is list-colorable. ■

Lemma 3: Any vertex of degree less or equal to 3 is a reducible subgraph.
Proof: Suppose the degree is d, d ≤ 3, 5− d ≥ 2. For Fix, obviously it holds. For Forb, since it has at least
two colors, Forb also holds. So it is a reducible subgraph.■

Lemma 4: If any vertex of degree 4 who has more than 2 neighbours of degree 4, there is a reducible subgraph.

v1 : 4 v2 : 4

v4 : 4v3 : 4

There are several soncitions between them and we need to consider them one by one

Condition 1: There is no edge between v2 and v3, v2 and v4, v3 and v4. To prove reducibility, we just need
to prove that this graph with lists is list-colorable:

v1 : 4 v2 : 2

v4 : 2v3 : 2
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Check Fix: If we fix v1, all the other 3 vertices has at least one color to choose, it is colorable. If we choose
v2 oe v3 or v4, suppose it is v2, we drop v2, and the graph with lists becomes:

v3 : 2 v1 : 3 v4 : 2

Color it from left to right, it is list-colorable.

Check Forb: If we forb all the 3 vertices of degree 4, the graph with lists becomes:

v1 : 4 v2 : 1

v4 : 1v3 : 1

We first color v2, v3 and v4, and v1 has at least one color to choose, it is list-colorable

If we forbid v1 and two of the other vertices, suppose they are v1, v4 and v3, the graph becomes:

v1 : 3 v2 : 2

v4 : 1v3 : 1

First we color v4 and v3, v1 has at least one color to choose, we color v1 and then v2, it is also list-colorable.

Condition 2: there is exactly one edge between v2 and v3, v2 and v4, v3 and v4. Suppose it is v2 and v4, the
graph becomes:
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v1 : 4 v2 : 4

v4 : 4v3 : 4

To prove it is reducible, we just need to prove that this graph is list colorable:

v1 : 4 v2 : 3

v4 : 3v3 : 2

Check Fix: If we fix v1, we drop v1 and the graph becomes

v2 : 2

v4 : 2v3 : 1

It is trivial that it is list-colorable.

If we fix v2 or v4, suppose it is v2(the other is the same) we drop v2, and the graph becomes:
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v4 : 2

v1 : 3

v3 : 2

It is trivial that it is list-colorable.

If we fix v3, by lemma 2, it is also list-colorable.

Check Forb:

If we fix v1, v2 and v3, the graph becomes:

v1 : 3 v2 : 2

v4 : 3v3 : 1

We color v3 first and drop it, by lemma 2, it is list colorable.

If we fix v1, v4 and v2, the graph with lists becomes:

v1 : 3 v2 : 2

v4 : 2v3 : 2

We first color v2 and v4, and then v1, v3, it is also list-colorable

If we forb v3, v2 and v4, the graph with lists becomes:
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v1 : 4 v2 : 2

v4 : 2v3 : 1

First we color v3 and drop it, by lemma 2, it is list colorable.

Condition 3: there are exactly two edges between v2 and v3, v2 and v4, v3 and v4. Suppose it is v2 and v4,
v3 and v4, the graph becomes:

v1 : 4 v2 : 4

v4 : 4v3 : 4

To prove it is reducible, we just need to prove that this graph is list-colorable:

v1 : 4 v2 : 3

v4 : 4v3 : 3

Check Fix:

If we fix v1 or v4, suppose we fix v1, the graph becomes:
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v2 : 2

v4 : 3v3 : 2

It is trivial that this graph with lists is list-colorable.

If we fix v2 or v3, we drop it and by lemma 2, it is still list-colorable.

Check forb:

If we forb v1, v4 and v2 or v1, v4 and v3, suppose it is v1, v4 and v2, the graph becomes:

v1 : 3 v2 : 2

v4 : 3v3 : 3

First we color v2 and drop it, and by lemma 2, it is list colorable.

If we forb v1, v3 and v2 or v2, v3 and v4, suppose we ford v1, v3 and v2, the graph with lists becomes:

v1 : 3 v2 : 2

v4 : 4v3 : 2

First we color v3, and by lemma 2, it is still list-colorable.

Condition 4: If vertices v2, v3, v4 are adjacent to one another, the graph becomes:
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v1 : 4 v2 : 4

v4 : 4v3 : 4

To prove that this graph is reducible, we need to prove that this graph is list-colorable:

v1 : 4 v2 : 4

v4 : 4v3 : 4

Check Fix: If we fix any one of the vertex, we drop it, and by lemma 2, it is list-colorable.

Check Forb: If we forb any 3 of the vertices, suppose they are v1, v2 and v3, the graph with lists become:

v1 : 3 v2 : 3

v4 : 4v3 : 3

We first color v4 and drop it, and by lemma 2, the graph is list-colorable.

Judging all those cases, v1, v2, v3 and v1 form a reducible subgraph. ■

Lemma 5: A graph with lists like this is reducible:

v1 : 4 v2 : 5

v4 : 4v3 : 4
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To prove that this graph with lists is reducible, we need to prove that this graph below with lists is list-
colorable:
v1 : 4 v2 : 2

v4 : 4v3 : 3

Check Fix: If we fix v1 or v4, suppose we fix v1, we drop it and the graph with lists becomes:

v2 : 1

v4 : 3v3 : 2

It is trivial that this graph is list-colorable

If we fix v2 and drop it, by lemma 2, it is list-clorable

If we fix v3 and drop it, by lemma 2, it is list-colorable

Check Forb: If we forb v1, v2 and v3 or v4, v2 and v3, suppose we forb v1, v2 and v3, the graph with lists
becomes:
v1 : 3 v2 : 1

v4 : 4v3 : 2

We first color v2 and drop it, by lemma 2, it is list-colorable

If we forb v1, v3 and v4, the graph with lists becomes:

10



v1 : 3 v2 : 2

v4 : 3v3 : 2

By lemma 1, it is still list-colorable.

If we forb v1, v2 and v4, the graph with lists becomes:

v1 : 3 v2 : 1

v4 : 3v3 : 3

We first color v2 and drop it. By lemma 2, it is list-colorable.

Juding all these cases, the graph is reducible ■

Lemma 6: A graph like this is list colorable:

v1 : 4

v2 : 4

v4 : 4

v3 : 5

v5 : 5

To prove it, we need to prove that this graph with lists is list-colorable:

11



v1 : 5

v2 : 5

v4 : 5

v3 : 3

v5 : 3

To prove it, we need to prove that this graph with lists is list-colorable:

Check Fix: If we fix v3 or v5, suppose we fix v5, and drop it, the graph becomes:

v1 : 4

v2 : 4

v4 : 4

v3 : 3

Color v3 and drop it, by lemma 2, it is list-colorable

If we fix v1 or v2 or v4, suppose we fix v2 and drop it, the graph becomes:

v1 : 4 v4 : 4

v3 : 2

v5 : 2

Color v5 and drop it, by lemma 2, it is list-colorable.

Check Forb: There are three conditions: forbid 0,1,or 2 vertices of list size 3.

Condition 1: If we forbid no vertex of list size 3, which means we forbid v1, v2 and v4. The graph becomes:
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v1 : 4

v2 : 4

v4 : 4

v3 : 3

v5 : 3

Color v1 and drop it, by lemma 1, it is list-colorable.

Condition 2: If we forb exactly one of the vertices of list size 3, which means we forb v1, v4 and v5. The
graph becomes:

v1 : 4

v2 : 5

v4 : 4

v3 : 3

v5 : 2

Color v5 and drop it, the graph becomes:

v1 : 3

v2 : 4

v4 : 3

v3 : 3

Color v1 and drop it, by lemma 2, it is list colorable.

Condition 3: If we forb two vertices of list size 3, suppose it is v2, v3 and v5, the graph becomes:

Condition 2: If we forb exactly one of the vertices of list size 3, which means we forb v1, v4 and v5. The
graph becomes:
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v1 : 5

v2 : 4

v4 : 5

v3 : 2

v5 : 2

Color v3 and v5 and drop them respectively, by lemma 2, the graph is list colorable.

Judging all the cases, the graph is reducible. ■

Lemma 7: For any vertex of degree 5, if is has more than 3 neighbours of degree 4, the graph has a reducible
subgraph. (This lemma is proven by computers)

Lemma 8: every 4-component without a circle and with more than 4 vertices is reducible. (This lemma is
proven by computers)

Corollary of Lemma 8: For every vertex v in a 4-component, suppose the number of its neighbours with
degree greater than 4 is n(v), the average n(v) for each of the component is at least 8

3 .

Proof of the corollary: suppose the component consists of k vertices, in which k ≤ 3 and since it is connected
and it has no edges, it is a spannign tree with n− 1 edges. So it has n− 1 edges inside the component, and
it has 4 · n− 2 · (n− 1) = 2n+ 2 neighbours in all. The average n(v) = 2n+2

n = 2 + 2
n ≥ 2 + 2

3 = 8
3

Lemma 9: This graph is reducible

v1 : 4

v2 : 4

v4 : 4 v3 : 5 v5 : 4 v6 : 4

v7 : 4

This lemma is also proven with the help of computers.

Lemma 10: (Dvořák, Masař́ık, Muśılek, Pangrác [1]): If any induced subgraph of G has a reducible subgraph,
then there exists ε > 0 such that G is ε-flexibly 5-choosable.

4 Theorems

Theorem 1: For a planar graph G, if mad(G) < 4 + 16
37 , there is an ε > 0, such that the graph is ε−flexibly

5−choosable.

Proof: If there is a reducible subgraph in any of the subgraphs, by lemma 10, there is a ϵ > 0, such
that the graph is ϵ−flexibly 5−choosable. So we just need to prove by contradiction and assume that there
is not a reducible subgraph in the graph.
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We set up these initial charges:

According to lemma 3, all vertices of degree less or equal to 3 is a reducible subgraph, so we just need to
consider about vertices of degree greater or equal to 4. For each vertex v, suppose its degree is deg(v), its
initial charge is: deg(v)− 4+ 16

37 . Notice that since mad(G) < 4+ 16
37 , the average degree of the graph is also

less than 4 + 16
37 , so the sum of all the initial charge is less than 0. (1)

We then set up these discharging rules: For each vertex of degree 5, give x = 6
37 to all its neighbours of

degree 4, which is not in a 4-triangle

For each vertex of degree 5, if it is adjacent to all the 3 vertices in a 4-triangle, give w = 7
37 to all of its

neighbours in a 4-triangle.

For each vertex of degree 5, if it is adjacent to exactly one of the vertices in a 4-triangle, give y = 9
37 to this

neighbour.

For each vertex of degree 6 or more, give z = 9
37 to all its neighbours of degree 4, regardless it is a vertex in a

4-triangle or not And finally, for each 4-component, average all the charges on each vertex of the component

Now lets consider about what the final charges will become:

First, for vertices of degree 5, according to lemma 7, it can have at most 3 neighbours of degree 4. If it is
adjacent to 3 vertices in a 4-triangle, its final charge will become: 5− (4+ 16

37 )−
7
37 · = 0 ≥ 0. And according

to lemma 5, it can not be adjacent to exactly 2 neighbours of degree 4 in a 4-triangle, otherwise there will
be a reducible subgraph. According to lemma 9, if it is adjacent to exactly one neighbour of degree 4 in
another 4-triangle, it can not be adjacent to another neighbour of degree 4 in another 4-triangle, otherwise
there will be a reducible subgraph. So it can have at most one neighbour of degree 4 in a 4-triangle, and 2
neighbours of degree 4 not in a 4-triangle. Its final charge will be at least: 5− (4+ 16

37 )−
9
37 −

6
37 · 2 = 0 ≥ 0.

If it is not adjacent to any of vertex of degree 4 in a 4-triangle, it can have at most 3 neighbour not in a
4-triangle, its final charge will be at least 5 − (4 + 16

37 ) −
6
37 · 3 = 3

37 > 0. Judging all the cases, the final
charges vertices of degree 5 will be non-positive.

Second, consider the final charges of the vertices in the 4-triangles: According to lemma 4, a vertex of degree
4 can have at most 2 neighbours of degree 4. This means that a 4-triangle can receive exactly 3 · (4− 2) = 6
charges from its neighbours, since a vertex of degree 4 has already had 2 neighbours of degree 4 in the
4-triangle. According to our discharging rules, these charges have to be either 7

37 or 9
37 . But according to

lemma 6, these 6 charges can not all be 7
37 , otherwise there will be a reducible subgraph. So the sum of final

charges of the 4-triangle will be at least 3 · (4− (4 + 16
37 )) + 3 · 7

37 + 3 · 9
37 = 0, which is also non-negative

Third, consider the final charges of vertices of degree 4 not in a 4-triangle. According to lemma 8 and its
corollary, the minimum charge a 4 vertex not in a 4-triangle receive will be 8

3x, so the final charge will be
greater or equal to 4− (4 + 16

37 ) +
8
3 · 6

37 = 0, which is also non-negative

Finally, for vertices of degree greater or equal to 6, suppose its degree is d, d ≥ 6 and it can give away at
most d charges to vertices of degree 4. So its final charge will be greater equal to d − (4 + 16

37 ) − d 9
37 =

28
37d− (4 + 16

37 ) ≥ 6 · 28
37 − (4 + 16

37 ) =
4
37 > 0, which is also non-negative

Judging all those cases, the final charges of every vertex in the graph is non-negative, which is against our
statement (1). This causes a conflict, and there should be a reducible subgraph in the graph, hence there is
a ε > 0, such that the graph is ε−flexibly 5−choosable. ■

Theorem 2: If a planar graph G has no adjacent triangle faces (i.e., no K4 − e and no bowtie graph as
induced subgraphs), then G is ε-flexibly 5-choosable.

Proof: We show that G must have a reducible subgraph. BWOC, suppose G has no reducible subgraph. For
every vertex v ∈ V (G), we assign charge d(v)− 4 to v. For every face f of G, we assign d(f)− 4 charge to
f . By Euler’s formula, the sum of charges is −8. Since δ(G) ≥ 4 (otherwise, we may always find a reducible
subgraph), the only negative charges are the triangle faces. Since we have forbidden K4 − e as an induced
subgraph, we are in a K4-free setting, and therefore a triangle where all vertices have degree 4 is reducible.
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As a result, each triangle must have a vertex of degree at least 5. Such a vertex has charge greater or equal to
1, so it can give a charge of 1 to its adjacent triangle face. This means the sum of all charges is non-negative.
Since the discharging rule does not change the overall charge, this is a contradiction. ■

Theorem 3: For a planar graph G, if there is no K4 subgraph and mad(G) < 4 + 80
139 , then there is an

ε > 0, such that the graph is ε−flexibly 5−choosable.

Proof: Since G is K4-free, by the lemma, it cannot have a triangle with all vertices degree 4. So let we
define some cases in discharging rules:

• Let x be degree 5 given to degree 4 in a triangle, where degree 4 vertices can form a P3

• Let y be degree 5 given to degree 4 not in a triangle, where degree 4 vertices can form a P3.

• Let v be degree 5 given to degree 4 in triangle, where degree 4 vertices can form a P2.

• Let w be degree 5 given to degree 4 not in triangle, where degree 4 vertices can form a P2.

• Let u be degree 5 given to degree 4, where this degree 4 does not connect any other degree 4 vertex.

Using the mad(G) < m, we will get

• x = 30
139 ;

• y = 30
139 ;

• w = 29
139 ;

• u = 15
139 ;

• v = 22
139 ;

So we have our discharging methods, for degree 6 or more, it can connect one or more vertices of degree 4.
So it will give exactly one charge to that degree.
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