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Introduction to Voting Theory

Voting Theory: mathematical study of systems to
aggregate many preferences.
Judge systems based on their properties.
Important for the real world: who should win?

Robustness to manipulation: which systems lead to the
fewest number of elections an adversary could manipulate
to change the results?
Techniques: simulations and proofs
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Two Candidates

Election Terminology:
ballot: 0 or 1
election: n voters choosing 0 or 1, {0,1}n

voting system: function f : {0,1}n → {0,1}
balanced voting system: equal chances of each
candidate being the winner
majority: voting system for odd n where candidate with
most votes wins
leave-one-out majority: for even n, disregarding the vote
of one voter across all elections to avoid ties
t-manipulable election: changing at most t ballots can
result in a different winner



Two Candidates

Of all 2-candidate n-voter voting systems, which one minimizes
the number of t-manipulable elections?

Theorem
For odd n, majority minimizes the number of t-manipulable
elections. (Heilman ’20)
For even n, leave-one-out majority minimizes the number of
t-manipulable elections.



Two Candidates

Main tool: Harper’s Theorem
hypercube: n-dimensional square/cube: vertices {0,1}n,
0-1 vectors of length n, where two vertices are adjacent if
they differ in exactly one coordinate.

lexicographic order: alphabetical order of vertices
simplicial order: ordering that first orders by the number
of zeros/ones, then within those sets of vertices, orders
lexicographically
boundary of S: vertices not in S with a neighbor in S
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Two Candidates

Theorem (Harper ’66)
For every ℓ, a subset S of size ℓ of the hypercube of minimum
boundary is given by an initial segment of simplicial order.

Simplicial order - Majority: n = 3

111

011,101,110

001,010,100

000

Simplicial order - Leave-one-out Majority:
n = 4

1111

0111,1011,1101,1110

0011,0101,0110,1001,1010,1100

0001,0010,0100,1000

0000



Two Candidates

Theorem (Harper ’66)
For every ℓ, a subset S of size ℓ of the hypercube of minimum
boundary is given by an initial segment of simplicial order.

vertices = elections
subset of hypercube S = elections where candidate 1 wins
boundary = manipulable elections
initial segment of simplicial order = majority or
leave-one-out majority



Simulations: Terminology

λ-Borda count voting system:
voters rank every candidate
assign points to each candidate: 1 to 1st, λ to 2nd, 0 to 3rd

candidate with most points wins

1pt 1
2pt 0pt

5: A > B > C
3: B > C > A
1: C > B > A

A: 5(1) + 3(0) + 1(0) = 5
B: 5(1/2) + 3(1) + 1(1/2) = 6
C: 5(0) + 3(1/2) + 1(1) = 3.5

B is selected as the winner.
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Simulations: Terminology

These systems can be visualized in an equilateral
triangle
Vertex represents one candidate receiving all top-place
votes
Distance to side: proportion of top-place votes that each
candidate received
Color determined by winner



Simulations: Terminology

Manipulability: proportion of elections where we can
change at most ϵ-proportion of each type of ballot to
change the outcome of the election



Polytope Calculation

Polytope: set of all points in R6 satisfying some linear
inequalities

generalized as a polyhedron in any dimension
enclosed by hyperplanes represented by linear inequalities
linear inequalities derived from x1, x2, x3, x4, x5, and x6

Manipulability = volume of the boundary between regions
with different winners
Finding the polytope volume determines the manipulability
at a given λ



Polytope Volume with respect to λ

Lower λ → lower polytope volume → lower manipulability
Plurality voting system (λ = 0) has the least manipulability



Generalized Borda Count

Simulations: using python to graphically display how
manipulability changes based on λ.

Input: 6 numbers, each representing a proportion of voters
for a ballot.
Manipulability: proportion of elections manipulated by
changing ϵ-proportion of ballots
Perturbation: changing ϵ-proportion of the ballots to check
if manipulable



Manipulability and Perturbations

Figure: Finding the necessary number of perturbations for accuracy
and efficiency.



Manipulability vs Epsilon

Figure: Finding a realistic and effective epsilon for the simulations.



Manipulability vs. Lambda Random Perturbations

Lower Lambda, Lower Manipulability
Lambda of 0 corresponds to Plurality



Manipulability vs. Lambda Non-Random Perturbations



Generalized Borda Elimination



Open Questions and Future Work

Question
Is plurality least manipulable across all 3 candidate voting
systems?

Question
What happens under other distributions of votes?
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We thank David Frankel (Uni High class of 1976) whose gift
made this experience possible for University Laboratory High

School students.

Thanks for listening.


