Robustness to Manipulation in Voting Theory

Charlie Hechler, Vraj Patel, Arya Thirodira, Firmiana Wang Graduate Student Leader: Robert Krueger

University of Illinois at Urbana-Champaign

Illinois Geometry Lab Final Presentation June 29, 2022

June 29, 2022

Introduction to Voting Theory

 Voting Theory: mathematical study of systems to aggregate many preferences.

- Judge systems based on their properties.
- Important for the real world: who should win?

Introduction to Voting Theory

- Voting Theory: mathematical study of systems to aggregate many preferences.
- Judge systems based on their properties.
- Important for the real world: who should win?
- Robustness to manipulation: which systems lead to the fewest number of elections an adversary could manipulate to change the results?

Introduction to Voting Theory

- Voting Theory: mathematical study of systems to aggregate many preferences.
- Judge systems based on their properties.
- Important for the real world: who should win?
- Robustness to manipulation: which systems lead to the fewest number of elections an adversary could manipulate to change the results?

(日) (日) (日) (日) (日) (日) (日)

Techniques: simulations and proofs

Election Terminology:

- ballot: 0 or 1
- election: *n* voters choosing 0 or 1, $\{0, 1\}^n$
- voting system: function $f : \{0, 1\}^n \rightarrow \{0, 1\}$
- **balanced voting system:** equal chances of each candidate being the winner
- majority: voting system for odd n where candidate with most votes wins
- **leave-one-out majority:** for even *n*, disregarding the vote of one voter across all elections to avoid ties
- *t*-manipulable election: changing at most *t* ballots can result in a different winner

Of all 2-candidate *n*-voter voting systems, which one minimizes the number of *t*-manipulable elections?

Theorem

For odd n, majority minimizes the number of t-manipulable elections. (Heilman '20) For even n, leave-one-out majority minimizes the number of t-manipulable elections.

・ コット (雪) (小田) (コット 日)

Main tool: Harper's Theorem

hypercube: n-dimensional square/cube: vertices {0,1}ⁿ,
 0-1 vectors of length n, where two vertices are adjacent if they differ in exactly one coordinate.

Main tool: Harper's Theorem

- hypercube: n-dimensional square/cube: vertices {0,1}ⁿ,
 0-1 vectors of length n, where two vertices are adjacent if they differ in exactly one coordinate.
- lexicographic order: alphabetical order of vertices
- **simplicial order:** ordering that first orders by the number of zeros/ones, then within those sets of vertices, orders lexicographically

(日) (日) (日) (日) (日) (日) (日)

• **boundary of** S: vertices not in S with a neighbor in S

Theorem (Harper '66)

For every ℓ , a subset S of size ℓ of the hypercube of minimum boundary is given by an initial segment of simplicial order.

Simplicial order - Majority: n = 3

- 111
- 011, 101, 110
- 001,010,100

000

Simplicial order - Leave-one-out Majority: n = 4

- 1111
- 0111, 1011, 1101, 1110
- 0011,0101,0110,1001,1010,1100

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 0001,0010,0100,1000
- 0000

Theorem (Harper '66)

For every ℓ , a subset S of size ℓ of the hypercube of minimum boundary is given by an initial segment of simplicial order.

- vertices = elections
- subset of hypercube S = elections where candidate 1 wins

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- boundary = manipulable elections
- initial segment of simplicial order = majority or leave-one-out majority

λ -Borda count voting system:

- voters rank every candidate
- assign points to each candidate: 1 to 1st, λ to 2nd, 0 to 3rd

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• candidate with most points wins

λ -Borda count voting system:

- voters rank every candidate
- assign points to each candidate: 1 to 1st, λ to 2nd, 0 to 3rd
- candidate with most points wins

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

λ -Borda count voting system:

- voters rank every candidate
- assign points to each candidate: 1 to 1st, λ to 2nd, 0 to 3rd
- candidate with most points wins

λ -Borda count voting system:

- voters rank every candidate
- assign points to each candidate: 1 to 1st, λ to 2nd, 0 to 3rd
- candidate with most points wins

B is selected as the winner.

$\lambda\text{-}\textbf{Borda}$ elimination voting system:

- score as with λ-Borda count
- eliminate lowest scoring candidate
- recounts until one candidate remains

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

λ -Borda elimination voting system:

- score as with λ-Borda count
- eliminate lowest scoring candidate
- recounts until one candidate remains

λ -Borda elimination voting system:

- score as with λ-Borda count
- eliminate lowest scoring candidate
- recounts until one candidate remains

λ -Borda elimination voting system:

- score as with λ-Borda count
- eliminate lowest scoring candidate
- recounts until one candidate remains

C is eliminated.

λ -Borda elimination voting system:

- score as with λ-Borda count
- eliminate lowest scoring candidate
- recounts until one candidate remains

	1pt		0pt
5:	Α	>	В
3:	В	>	Α
1:	В	>	Α

λ -Borda elimination voting system:

- score as with λ-Borda count
- eliminate lowest scoring candidate
- recounts until one candidate remains

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

λ -Borda elimination voting system:

- score as with λ -Borda count
- eliminate lowest scoring candidate
- recounts until one candidate remains

B is eliminated; A wins.

- These systems can be visualized in an **equilateral** triangle
- Vertex represents one candidate receiving all top-place votes
- **Distance to side**: proportion of top-place votes that each candidate received
- Color determined by winner

 Manipulability: proportion of elections where we can change at most ε-proportion of each type of ballot to change the outcome of the election

(日)

Polytope Calculation

- Polytope: set of all points in ℝ⁶ satisfying some linear inequalities
 - generalized as a polyhedron in any dimension
 - enclosed by hyperplanes represented by linear inequalities
 - linear inequalities derived from x₁, x₂, x₃, x₄, x₅, and x₆
- Manipulability = volume of the boundary between regions with different winners
- Finding the polytope volume determines the manipulability at a given λ

(日) (日) (日) (日) (日) (日) (日)

Polytope Volume with respect to λ

Lower λ → lower polytope volume → lower manipulability
Plurality voting system (λ = 0) has the least manipulability

Generalized Borda Count

- Simulations: using python to graphically display how manipulability changes based on λ.
 - **Input**: 6 numbers, each representing a proportion of voters for a ballot.
 - Manipulability: proportion of elections manipulated by changing ε-proportion of ballots
 - **Perturbation**: changing *ε*-proportion of the ballots to check if manipulable

(日) (日) (日) (日) (日) (日) (日)

Manipulability and Perturbations

Figure: Finding the necessary number of perturbations for accuracy and efficiency.

Manipulability vs Epsilon

Figure: Finding a realistic and effective epsilon for the simulations.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Manipulability vs. Lambda Random Perturbations

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

- Lower Lambda, Lower Manipulability
- Lambda of 0 corresponds to Plurality

Manipulability vs. Lambda Non-Random Perturbations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のく(で)

Generalized Borda Elimination

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Open Questions and Future Work

Question

Is plurality least manipulable across all 3 candidate voting systems?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Question

What happens under other distributions of votes?

Open Questions and Future Work

Question

Is plurality least manipulable across all 3 candidate voting systems?

Question

What happens under other distributions of votes?

We thank David Frankel (Uni High class of 1976) whose gift made this experience possible for University Laboratory High School students.

Thanks for listening.